Math 246A Lecture 7 Notes

Daniel Raban

October 10, 2018

1 Complex Projective Space and Introduction to Cauchy's Theorem

1.1 Complex projective space

Definition 1.1. Let $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$. Then complex projective space $\mathbb{C}P^1$ is the set of complex lines in \mathbb{C}^2 .

We can think of this as

$$\left\{ \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} : |z_1|^2 + |z_2|^2 \neq 0 \right\} / \cong,$$

where $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \cong \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ if there exists $\lambda \in \mathbb{C} \setminus \{0\}$ such that $w_1 = \lambda z_1$. Now let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be a 2 × 2 complex matrix with $ad - bc \neq 0$. Then $A : \mathbb{C}P^1 \to \mathbb{C}P^1 \iff \det(A) \neq 0$.

Given A define $T_A : \mathbb{C}P^1 \to \mathbb{C}P^1$ as $T_A \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = A \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$. For all A and A', A and A' have the same action on $\mathbb{C}P^1$ if and only if $A' = \lambda A$. So

$$\mathrm{PSL}(2,\mathbb{C}) = \{A : \det A = 1\}/(\pm I).$$

Given $L, M \in \mathbb{C}P^1$ there exists an $A \in \mathrm{PSL}(2,\mathbb{C})$ such that A(L) = M. Then

$$\begin{bmatrix} w_1\\ w_2 \end{bmatrix} = \begin{bmatrix} az_1 + bz_2\\ cz_1 + dz_2 \end{bmatrix} \iff \frac{w_1}{w_2} = \frac{az_1/z_2 + b}{cz_1/z_2 + d}.$$

We therefore get a correspondence between complex projective space, \mathbb{C}^* , and the Riemann sphere.

Let's look at the generators and their action on S^2 .

- 1. $z \mapsto e^{i\theta}z$: This fixes the north and south poles, and rotates the sphere by the angle θ about the vertical axis. We get $y_3 = x_3$ and $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- 2. $z \mapsto kz, k > 0$: If k > 1, horizontal circles get shifted up the sphere. If k < 1, horizontal circles get shifted down the sphere, like a flow.
- 3. $z \mapsto 1/z$: This flips the Riemann sphere upside down.
- 4. $z \mapsto z + \lambda$, $\lambda = \mathbb{C}$: Without loss of generality, $\lambda = 1$. Look at what this does to lines in \mathbb{C}^* , which are circles on S^2 that pass through the north pole.

1.2 Cauchy's theorem, simplest form

Definition 1.2. A C^1 parameterized curve is a function $\gamma = \{z(t) : z : [a, b] \to \mathbb{C}\}$ such that z is C^1 on $(a - \varepsilon, b + \varepsilon)$ for some $\varepsilon > 0$.

Definition 1.3. The contour integral over γ is

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt.$$

Now suppose $h: [c, d] \to [a, b]$ is C^1 and increasing. Then by change of variables,

$$\int_{\gamma} f(z) \, dz = \int_{a}^{b} f(z(t)) z'(t) \, dt = \int_{c}^{d} f(z(h(s))) z'(h(s)) h'(s) \, ds = \int_{c}^{d} f(w(s)) w'(s) \, ds,$$

where w(s) = z(h(s)). If h is decreasing, h(c) = b, and h(d) = a, then

$$\int_c^d f(w(s))w'(s)\,ds = \int_a^b f(z(t))z'(t)\,dt.$$

If $\gamma = \gamma_1 + \dots + \gamma_n$ and $\gamma_j[a_j, b_j] \to \mathbb{C}$ is C^1 with $b_j = a_{j+1}$ and $\gamma_j(b_j) = v - j + 1(a_{j+1})$, then

$$\gamma(t) = \sum_{j} \gamma_j(t) \mathbb{1}_{[a_j, b_j]}$$

is piecewise C^1 . If f is continuous on γ , define

$$\int_{\gamma} f(z) \, dz = \sum_{j} \int_{\gamma_j} f(z) \, dz.$$

Lemma 1.1.

$$\left|\int_{\gamma} f(z) \, dz\right| \le (\sup_{\gamma} |f(z)|) \int_{a}^{b} |z'(t)| \, dt.$$

Proof.

$$\left|\int_{a}^{b} f(z)z'(t)\,dt\right| \leq \int_{a}^{b} |f(z)||z'(t)|\,dt \leq \left(\sup_{\gamma} |f(z)|\right) \int_{a}^{b} |z'(t)|\,dt.$$

Observe that $\int_a^b |z'(t)| dt$ is the length of the parametrized curve γ .

Definition 1.4. A domain (or a region) $\Omega \subseteq \mathbb{C}$ is a connected open set.

Definition 1.5. $H(\Omega)$ is the set of functions $f : \Omega \to \mathbb{C}$ such that f' exists and is continuous on Ω .

Definition 1.6. $A(\Omega)$ is the set of functions $f : \Omega \to \mathbb{C}$ such that for all $z_0 \in \Omega$, there is a $\delta(z_0) > 0$ usch that if $B = \{|z - z_0| < \delta(z_0)\} \subseteq \Omega$, then

$$f(z) = \sum_{n=0}^{\infty} a_n(z_0)(z - z_0)^n$$

in B.

These are the functions with convergent power series in Ω .

Lemma 1.2. Let $f \in H(\Omega)$, γ be piecewise C^1 , and $\gamma \subseteq \Omega$. Then

$$\int_{\gamma} f'(z) \, dz = f(\gamma(b)) - f(\gamma(a)).$$

Proof.

$$\int_a^b f'(z(t))z'(t)\,dt = \int_a^b \frac{d}{dt}f(z(t))\,dt = f(\gamma(b)) - f(\gamma(a)).$$

Let R be a rectangle in \mathbb{C} with vertices a + ic, b + ic, a + id, b + id, where a < b, c < d, and $a, b, c, d \in \mathbb{R}$. Then $\partial R = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$, where

$$\gamma_1 = (a + ci) + t(b - a)$$
 $0 \le t \le 1$,
 $\gamma_2 = (b + ci) + ti(d - c)$ $0 \le t \le 1$,

and so on.

Theorem 1.1 (Cauchy integral formula for a rectangle). If $\overline{R} \subseteq \Omega$ and $f \in H(\Omega)$, then

$$\int_{\partial R} f(z) \, dz = 0.$$

Proof.

$$\begin{aligned} \int_{\partial R} f(z) \, dz &= \int_{a}^{b} f(z+ic) \, dx + i \int_{c}^{d} f(b+iy) \, dy - \int_{a}^{b} f(x+id) \, dx - i \int_{c}^{d} f(a+iy) \, dt \\ &= I + II + III + IV \\ I + III &= \int_{a}^{b} (f(z+ic) - f(z+id)) \, dx = \int_{a}^{b} \left(-\int_{c}^{d} \frac{\partial f}{\partial y}(x+iy) \, dy \right) \, dx \\ II + IV &= \int_{c}^{d} \int_{a}^{b} \frac{\partial f}{\partial x}(x+iy) \, dy \, dx \end{aligned}$$

But $\frac{\partial f}{\partial y} + i \frac{\partial f}{\partial x} = 0$ by the Cauchy-Riemann equations.